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Nitrogen (N) is one of the indispensable nutrients required by plants for their growth, development, and survival. Being a limited
nutrient, it is mostly supplied exogenously to the plants, to maintain quality and productivity. The increased use of N fertilizers is
associated with high-cost inputs and negative environmental consequences, which necessitates the development of nitrogen-use-
efficient plants for sustainable agriculture. Understanding the regulatory mechanisms underlying N metabolism in plants under
low N is one of the prerequisites for the development of nitrogen-use-efficient plants. One of the important and recently
discovered groups of regulatory molecules acting at the posttranscriptional and translational levels are microRNAs (miRNAs).
miRNAs are known to play critical roles in the regulation of gene expression in plants under different stress conditions
including N stress. Several classes of miRNAs associated with N metabolism have been identified so far. These nitrogen-
responsive miRNAs may provide a platform for a better understanding of the regulation of N metabolism and pave a way for
the development of genotypes for better N utilization. The current review presents a brief outline of miRNAs and their
regulatory role in N metabolism.

1. Introduction

The expanding global population and increased food
demands call for enhanced plant production, which in turn
depends primarily on the nutrition status of the plants. Plants
need different mineral nutrients for their proper growth and
development. N is one of the most essential macronutrients
required by plants for their optimal growth, development,
productivity, reproduction, fitness, and survival [1]. It is
involved in various physiological and metabolic processes
including amino acid metabolism, carbon assimilation, and
protein synthesis. N forms a key constituent of different plant
biomolecules including proteins, nucleic acids, chlorophylls,
enzymes, energy storage, and transfer compounds, like ATP
(adenosine triphosphate), signaling molecules, secondary
metabolites, quaternary ammonium compounds, plant hor-
mones, and polyamines [2, 3]. Owing to its role and impor-
tance in plants, it may not be wrong to state that N

represents plant life. As far as the quantity of mineral nutri-
ents needed by the plants is concerned, N comes first in the
list. Despite its importance, N is the key limiting nutrient in
agriculture. Low concentrations of N limits plant growth,
development, and productivity. To acquire maximum yields
for the burgeoning population, there has been an increased
use of synthetic N fertilizers. The current global annual N fer-
tilizer demand is estimated to be more than 108 million
tonnes [4]. However, there are some negative aspects associ-
ated with this dramatically increased utilization of N fertil-
izers. First is the high cost of N fertilizers. The use of N
fertilizer is classically the single principal input cost for
numerous crops, and since its production is energy-intensive,
this cost is reliant on the price of energy [5]. Secondly, most
of the N added to the soil is not utilized by the plants and is
lost to the environment. Usually, only less than half of the
applied N is taken up by the plant depending on the species
and cultivar. The remaining larger proportion of N gets
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subjected to surface run-off, leaching of nitrates, ammonia
(NH3), volatilization, or bacterial competition finally finding
its way to the environment [6]. The negative impacts of N on
the environment are becoming all the time more obvious [7,
8]. The accumulation of the excess nitrates in freshwater bod-
ies leads to eutrophication resulting in algal blooms which in
turn produce a hypoxic environment resulting in the signifi-
cant loss of aquatic life forms [9]. The production process
and excessive usage of N fertilizers have also been implicated
to play crucial roles in both global warming and stratospheric
ozone depletion [10]. For example, nitrous oxide (N2O), the
third most abundant greenhouse gas (GHG), after only car-
bon dioxide and methane [11], is the product of both anthro-
pogenic and natural processes [11] and is 300 times more
potent GHG than CO2 [12]. Although the emission of this
GHG is largely attributed to microbial nitrification and deni-
trification (both natural processes), however, the addition of
N fertilizers to soil accelerates the production of nitrous
oxide, giving this process an anthropogenic effect. Economi-
cally, N pollution is projected to cost the global economy
200-2000 billion USD annually, which corresponds to
0.2%-2% of global GDP [13].

In this context, to solve this conundrum and to allow
sustainable, eco-friendly food production, there is a great
need to develop plants/or genotypes that are less dependent
on the injudicious N overfertilization. This can be achieved
by increasing the N uptake efficiency and the utilization effi-
ciency of the absorbed N. It has been estimated that an
increase of only 1% of N use efficiency may save 1.1 billion
dollars annually [14].

Nitrogen-use-efficiency (NUE) in plants is a complex
trait that relies both on the availability of N in the soil and
the mode of usage of N. While the former factor is affected
by various environmental factors including temperature,
precipitation, soil type, soil salinity, wind, and pH, the latter
depends on several important processes including uptake,
assimilation, translocation, and recycling and remobilization
(during senescence) [15, 16].

Understanding the mechanisms underlying plant adap-
tation to N deficiency is imperative for improving NUE
and trimming down chemical N fertilization. To sense
the nutrient deficiency and to turn on adaptive mecha-
nisms, plants have evolved various mechanisms at physio-
logical, biochemical, and molecular levels [17]. At the
molecular level, plants trigger a network of genes together
with their altered expression via transcriptional, and/or
translational regulations. Some of the genes are upregu-
lated (mainly the protective ones) while some are down-
regulated (mainly the negative regulators). One of the
intricate molecular mechanisms operative at the post-
transcriptional and/or translational level to regulate the
genes adapted to the N-deficient environments is the small
regulatory microRNA.

2. MicroRNAs and Their Mode of Action

MicroRNAs (miRNAs) are an important class of small,
endogenous, noncoding, single-stranded, regulatory RNA
molecules almost 21-24 nucleotides long and are produced

from the precursors with intramolecular stem-loop struc-
tures through endonucleolytic processing [18]. The miRNAs
are extensively distributed in biological organisms and are
highly conserved (evolutionary) in plants [19, 20]. Based
on the sequence complementarity miRNAs bind to specific
sites in the 3′ UTR region of the target mRNA and facilitate
posttranscriptional silencing through degradation or/and
translational inhibition of mRNA [19–21].

The miRNA regulates the expression of their target
genes in three main ways (Figure 1) as follows:

(i) Cleavage of target mRNA: One of the main mecha-
nisms of the negative gene regulation by miRNA is
the degradation of the target mRNA. The miRNAs
based on their complementarity sequences pair with
the target mRNA and result in the cleavage of the
target mRNA within the region of pairing. This pro-
cess of cleavage which occurs on RER [22] and
yields 5′ and 3′ cleavage products is catalyzed by
the PIWI domain of AGO proteins. The PIWI
domain of AGO proteins forms a fold (analogous
to RNase H) and constitutes the main catalytic cen-
ter [23–26]. Different AGO proteins may possess
this catalytic activity, e.g., in Arabidopsis, AGO1,
AGO2, AGO4, AGO7, and AGO10 are known to
exhibit this catalytic action [27–31]. The miRISC
uncapped and sensitive 3′ cleavage products are
degraded by the exonucleases (EXONUCLEASE4
being identified while the other nucleases were still
unknown). On the other hand, capped 5′ cleavage
products first undergo uridylation by HESO1 [32]
and are then cleaved by RISC-INTERACTING
CLEARING 3′-5′ EXORIBONULEASE 1 (RICE1)
and (RICE2) [33] assisted by some RNA exosome
cofactors including SKI2, SKI3, and SKI8 [34]

(ii) Repression at the translational level: In addition to
target messenger RNA cleavage, miRNAs negatively
regulate the gene expression through translational
repression also [35]. In the case of plants, although
miRNAs and their target mRNAs have mostly
near-perfect complementarity in their sequences,
nevertheless, the negative regulation via transla-
tional repression is extensive [36]. This process is
facilitated by DRB2 which represses the expression
of HYL1 [37]. The translational repression is car-
ried out by many AGO-miRISC complexes includ-
ing AGO1-miRISC, AGO7-miRISC, and AGO10-
miRISCs [36, 38] through different mechanisms,
e.g., AGO1-miRISCs execute the repression (1) by
targeting 5′ untranslated regions and blocking ribo-
some recruitment and translation initiation or (2) by
targeting open reading frames (ORFs) and blocking
ribosome movement and translation elongation
[39]. The execution of this repression is assisted by
multiple factors including KATANIN [36], VARI-
COSE [36], SUO [40], and ALTERED MERISTEM
PROGRAM1 (AMP1) [41]
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(iii) DNA methylation: Although miRNAs act mainly at
the post-transcriptional level, yet some studies sug-
gest their role at the transcriptional level by methyl-
ating DNA. For example, one of the prerequisites
required for the methylation of PHB and PHV
genes is the complementarity between PHB and
PHV mRNAs and miR165/166 [42]. Another exam-
ple is the directed methylation of target loci-derived
transcripts in rice by effector AGO4 which com-
prises long miRNAs processed from pri-miRNAs
by DCL3 [43]

3. Biological Functions of MicroRNAs in
N Metabolism

The microRNAs are known to regulate various processes
associated with plant growth and development [22, 44–46].
Besides, there are several miRNA families which are
expressed during the different stress conditions including
nutrient stress and modulate the adaptive responses
[47–49]. With the advancement in molecular techniques
including deep sequencing technology, a large number of
plant miRNA families with important roles in mediating
plant tolerance to N stress have been identified and charac-
terized. These small regulatory molecules are implicated in
different N metabolic processes including uptake, transport,
and assimilation and regulate the use of N and partake in the
plant adaptation to N deficiency [50].

Numerous studies have demonstrated the changes in the
expression level of different miRNA families in N limitation
conditions in various plant species such as Arabidopsis [51,
52], maize [53, 54], sorghum [55], rice [32], and soybean
[33]. The altered expression pattern of these miRNAs has
been shown to play crucial roles in plant adaptive responses
to N limitation via the mediation of the expression of their
target genes involved in N uptake and remobilization [56].
Although a number of miRNAs responsive to N stresses
have been identified via changes in their expression profile
[51, 57, 58], few of them have been characterized.

The comparison of the identity and expression profile of
different miRNAs responsive to N stresses reveals several
common features among these key regulators. In the majority
of the cases, it has been observed that some miRNAs are
upregulated, while others are downregulated, under N limit-
ing conditions, depending on the species, tissues, and exper-
iment design. For instance, in Arabidopsis, upregulated
miRNAs include miR156, miR160, and miR447 while miR-
NAs including miR169, miR397, miR398, miR399, miR408,
and miR827 were significantly downregulated under N star-
vation. A study by Li et al. [59] demonstrated the altered
expression of twenty miRNAs including miR160, miR167,
miR393, miR396 etc. under N deficient conditions in peanut.
Analysis of miRNA expression in root tissues of several rice
genotypes showed that miR156 and miR447 were overex-
pressed while miR398 was downregulated in response to N
stress [32]. The different miRNAs which get differentially
expressed under N starvation conditions are given in Table 1.

4. miRNAs and Their Targets under Low N

Since miRNAs selectively regulate the expression of their
target genes under specific conditions, so it is crucial to
identify and analyze these target genes. Using computational
prediction tools, we can easily identify these targets as plant
miRNAs normally recognize their target genes through
complementary base-pairing. Some data indicate that the
miRNAs target multiple targets belonging mostly to plant
transcription families and proteins/enzymes involved in var-
ious metabolic pathways including various stress responses
[60, 61].

4.1. miR156. In Arabidopsis, it has been demonstrated that
miR156 regulates the SPL (Squamosa Promoter Binding
Protein Like) gene family and targets 11 genes out of its 17
members [62–65]. This SPL gene family regulates leaf for-
mation, anthocyanin biosynthesis, vegetative phase change,
flowering, and fertility [66–68]. Transgenic plants of Arabi-
dopsis, rice, tomato, and maize with upregulated expression
of miR156 resulted in prolonged phase transitions and
stunted growth [69–72]. Emerging data from the analysis
of the transcriptomics of N-limited plants, it has been dem-
onstrated that one of the miR156/SPL3 modules might act
by repressing the vegetative phase change under limiting
the availability of N [73]. Overexpression of miR156 also
promotes increased anthocyanin biosynthesis (through
SPL9) [74] causing redness and yellowing of leaves, a key
feature of the plant N starvation response [75].
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Figure 1: Schematic diagram depicting the biogenesis and mode of
action of plant microRNAs.
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Table 1: Differentially expressed miRNAs under nitrogen starvation condition.

miRNA Target/function
Mode of
regulation

References

miR156
Squamosa promoter binding protein-like (SPL)

transcription factors
Up [119–128]

miR159
MYB, TCP transcription factors/peptidase C48,

SUMO/sentrin/Ubl1
Up [119, 124–126, 129–134]

miR160
Serine carboxypeptidase; transcription factor; auxin-responsive

factors (ARF10)
Up

[119, 120, 123, 125,
135–137]

miR162 Dicer-like proteins Up [138, 139]

miR164 NAC transcription factors Up [119, 135, 136, 140]

miR166 HD-ZIP transcription factors Down [135, 138, 141, 142]

miR166a-3p Kinesin-1-like protein PSS1; transport [129]

miR167 Auxin-responsive factors (ARF8)/cation/H+ exchanger Up/down
[125, 126, 130, 136–140,

143]

miR167c-5p SCF ubiquitin ligase complex [129]

miR167f-3p_L-1R+1 Ubiquitin ligase complex; lysosomal alpha-mannosidase [129]

miR168 ARGONAUTE1 (AGO1) Up/down [119, 125, 136, 138, 140]

miR168a-5p WRKY; Cul4-RINGE3 ubiquitin ligase [129]

miR168a-3p-L-3 Ubiquitin domain containing protein DSK2b [129]

miR169
HAP2 transcription factors CAAT-binding factor/NFYA/MDIS1-

interacting receptor-like kinase 1/protein high chlorophyll
fluorescent 107

Up/down
[117, 119, 124–126, 130,

136, 137, 139, 141, 142, 144,
145]

miR169o NF-YA1, NF-YA4, NF-YA10, NF-YA11, and TRA [146]

miR169d-5p
Protein serine/threonine kinase; ABC transporter; C family

member 13
[129]

miR169d-3p-L-2R+2
Galactinol-sucrose galactosyltransferase 2; E3 ubiquitin-protein

ligase
[129]

miR169f-5p NF-YA2 [119]

miR169(n, o)-5p NF-YA4/NF-YA10 [119]

miR169r-5p NF-YA1/NF-YA3 [119]

miR170 NSP2 transcription factor protein [147]

miR171 Scarecrow-like transcription factors (SCL)/GAGA binding-like Up/down
[121, 123, 125, 126, 130,

138]

miR171a DELLA proteins RGL2; malate dehydrogenase [129]

miR171a-3p GRAS transcription factor/similar to scarecrow-like 6 [119]

miR171i-3p GRAS transcription factor [119]

miR171e-5p_2ss2GA21AG Protein binding [129]

miR172 AP2 like transcription factors Up [136–138]

miR172b-5p [129]

miR172(a, d)-3p AP2/EREBP family transcription factor [119]

miR262 F-box/kelch-repeat protein Down [120]

miR319 TCP transcription factors/MYB transcription factor; Dnaj protein Up/down
[125, 126, 129, 133, 136,

143]

miR319a-3p.2-3p_R+1 SCF ubiquitin ligase complex; MYB [129]

miR319(a-3p.2,b)-3p OsPCF6/TCP21 [119]

miR393(a, b)-5p Auxin signaling F-box 2/OsTIR1 [119]

miR393-5p_L-1R+1
Auxin-activated signalling; protein transport inhibitor response 1;

LRR kinase
[129]

miR393 Auxin receptors (TIR1/F-box AFB)/cyclin-like F-box Up
[125, 126, 130, 133, 137,

138, 147]

miR394 F-box protein Up/down [139]

miR394-5p SCF ubiquitin ligase complex; glutathione transferase activity [129]
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Table 1: Continued.

miRNA Target/function
Mode of
regulation

References

miR395 ATP sulfurylase; sulfate transporters (APS/AST) Up/down
[120, 123, 125, 133, 136,

146]

miR396 Growth regulating factor (GRF) Up/down [121, 125, 138, 143, 148]

miR396a-5p
Phosphatidylinositol 4-phosphate 5-kinase 1; glutamate

dehydrogenase; response to GA
[129]

miR396(a, b)-5p OsGRF7 [119]

miR396c-5p GTPase activity; HSP protein; RPM1 [129]

miR396e-5p Transcription factor TFIID; ribonuclease P activity [129]

miR396ef s growth-regulating factors (OsGRFs) [149]

miR397 Laccases, beta-6-tubulin/L-ascorbate oxidase/LAC17 Up/down
[120, 125, 127, 133, 136,

139, 147, 148]

miR398
COX5b-1; CCS1 COX (CSD)/IAA-amino acid

hydrolase ILR1/GATA31
Up

[121, 123, 126, 136, 139,
147, 148, 150–153]

miR399 Ubiquitin conjugase E2/UBC24 Up/down
[123, 125, 129, 131, 136,

138, 143, 154, 155]

miR399a Oxidoreductase; transcription factor [129]

miR408 Plantacyanin laccases/superoxide dismutase [Cu–Zn]1A/SOD1A Up/down
[120, 123, 125, 128, 131,

133, 136, 139, 147]

miR408_L-1 L-ascorbate oxidase; LPEAT1-like [129]

miR408-p5_1ss20GA Brassinosteroid insensitive 1 [129]

miR414 bZIP transcription factor Down [120]

miR419 Organic anion transporter [147]

miR1425-5p PPR domain-containing protein [119]

miR444 MADS-box Up [119]

miR528 POD, SOD Up [136, 139, 140]

miR528-5p Lectin-rich repeat receptor kinase [129]

miR530-5p-R+1 Fructose-bisphosphate adolase; HSP70 [129]

miR530-5p_R+1_1ss20AG [129]

miR530-5p-L+1 Fructose-bisphosphate aldolase; SCF ubiquitin ligase complex [129]

miR531_L-4R+1-1ss5CT NAD(P)H dehydrogenase; ABC transporter [129]

miR780 Na+/H+ antiporter Up [123]

miR815c-p5_2ss6CT21CT
UDP-arabinose 4-epimerase 1-like; transcription

factor TGA2-like; Dnaj
[129]

miR826 Alkenyl hydroxyalkyl producing 2 Up [123]

miR827
Ubiquitin E3 ligase with RING and spx-domain-contain;

phenylalanyl-tRNA synthetase; WPP domain-interacting protein
2; BTB/POZ domain-containing protein

Down [123, 129, 136, 139, 147]

miR829 AP2 domain ethylene response Up [123, 133, 156]

miR839 Up [123]

miR840 Basic helix-loop-helix (bHLH) DNA-binding protein [147]

miR846 Jacalin lectin family protein Up [123, 156]

miR850 Down [123]

miR854
UDP-glucuronic acid decarboxylase 2/ethylene-responsive

transcription factor/GRAS transcription factor
[147]

miR857 Laccase Down [123]

miR858 Myb transcription factor [130]

miR863 Transducin/WD40 repeat-like other RNA Up

miR1040 Acylsphingosine kinase/hypersensitive-induced response protein 1 Down [120]

miR1074 LRR receptor-like serine/threonine-protein kinase [147]

miR1088 CoA ligase-like 3 [147]
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Table 1: Continued.

miRNA Target/function
Mode of
regulation

References

miR1127b-3p-1ss12TC UDP-glucuronate decarboxylase; SCF ubiquitin ligase complex [129]

miR1127b-p5-1ss3TC [129]

miR1133 bZIP transcription factor superfamily protein [147]

miR1137a-p3_1ss9CT [129]

miR1137a-p5_2ss9GA20GC DNA mismatch repair protein MSH6 [129]

miR1214 Peroxidase 2-like/F-box domain containing protein [147]

miR2097 Translation initiation factor eIF-2B subunit delta [147]

miR2199 MDIS1-interacting receptor-like kinase 1 [147]

miR2275-p5

LRR receptor-like serine/threonine-protein kinase FLS2;
brassinosteroid insensitive 1/stress response gene TaPRP/signal
transduction-associated genes TaWRK and TaSPK/trafficking

genes TaAAT, TaNTA, and TaIM

[129, 157]

miR2630 Leucine-rich repeat receptor-like serine/threonine-protein kinase [147]

miR2864 Sphingosine kinase 1 [147]

miR2916-p3-2ss2TC17CA Fructose-bisphosphate aldolase; PRM1; peroxidase [129]

miR2916-p5-2ss2AG17TG
Protein serine/threonine kinase; glutathione

S-transferase (GSTF) 1; DELLA
[129]

miR2919 F-box protein [147]

miR2948 LRR receptor-like serine/threonine-protein kinase Down [120]

miR3454 Protein kinase family protein [147]

PC-5p-3645-2157 Metalloendopeptidase; SCF ubiquitin ligase [129]

miR3706 Pentatricopeptide repeat-containing protein [147]

miR3946 ABC transporter G family member 41/SBP-transcription factor 5 [147]

miR3979-3p PPR domain-containing protein [119]

miR4350 Cyclin-A2/putative ubiquitin-like-specific protease 1B [147]

PC-3p-4780_1750 Aspartic endopeptidase; transcription factor [129]

miR5059 Glycosyltransferase family 61 protein [147]

miR5070 Transport inhibitor response 1 protein [147]

miR5262 F-box/kelch-repeat protein Down [120]

miR5301 Harbinger transposase-derived nuclease Down [120]

miR5384-p5
UDP-glycosyltransferase 83A1-like; ethylene-responsive

transcription factor 1B
[129]

miR5721 Auxilin-related protein 2 Down [119]

miR6148 Hydroxycinnamoyl transferase Down [119]

miR6224 RNA-directed RNA polymerase Down [119]

miR6300-p5 Protein RPM1; response to nitrate [129]

miR9652-5p Retrograde transport [129]

miR9653b-p3 Protein binding [129]

miR9655-p5 Transcription factor; oxidation-reduction [129]

miR9657a-3p
Serine-type endopeptidase inhibitor activity;

amino acid transport; WRKY
[129]

miR9658-3p SCF ubiquitin ligase complex; RPM1 [129]

miR9664–3p-L-1 RPM1 protein; zinc finger CCCH domain-containing glucosidase [129]

miR9666a-3p Alternative splicing regulator; regulator protein NPR5 [129]

miR9666b-3p DNA-directed RNA polymerase II subunit I/stress response [129]

miR9672a-3p-L+2R-2 Replication factor C subunit 1 [129]

miR9672b-p5 LRR receptor-like serine/threonine-protein kinase FLS2-like [129]

miR9674b-5p
SCF ubiquitin ligase complex; calcium-dependent

protein kinase 20-like
[129]
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4.2. miR160. Under N starvation, the overexpressed miR160
has been observed to enhance the production of lateral roots
in Arabidopsis through the downstream effect on members of
the auxin response factor (ARF) family [51]. Mallory et al.
demonstrated that ARF10, ARF16, and ARF17 mRNAs are
the specific targets of miR160 in Arabidopsis [76]. Through
more advanced techniques, studies showed that the overex-
pressed miR160 exerts its regulatory effect on the root gravity
sensing and the number of lateral roots produced through
the ARF10- and ARF16-mediated downstream pathways
[77]. Likewise, fewer lateral and adventitious roots were
observed in Arabidopsis plants that demonstrated increased
levels of ARF17 mRNA due to impaired miR160 regulation
[78]. Studies showed that transgenic plants with upregulated
levels of miR160 had developed more lateral and adventitious
roots implying that under N deficiency, the induced overex-
pression of miR160 might promote lateral and adventitious
root growth via the mediation of ARF16 and ARF17 [52].
These pieces of information suggest that miR160 upregula-
tion under N starvation conditions may have a role in pro-
moting lateral root growth to access additional N.

4.3. miR164/miR167.miR164 is reported to target and cleave
the gene transcripts containing the NAC domain, including
NAC1, which are involved in auxin-induced signal trans-
duction for the development and growth of lateral roots
[79]. Under low nitrate conditions, miR164 is upregulated,
while the transcript levels of NAC1 genes are downregulated
[80]. Plants with downregulated expression of miR164 con-
comitant with the upregulation of gene transcripts contain-
ing the NAC domain show more lateral root growth [79].
Under the N-limiting conditions, miR167 in Arabidopsis is
reported to target two Auxin Response Factors ARF6 and
ARF8 and mediates the plant growth and development of
lateral roots [81]. For instance, the expression levels of
ARF8 are upregulated in pericycle and lateral root cap cells
under N-deficient conditions and regulate the growth and
development of lateral roots [82].

ARF proteins induce or suppress the expression of the
gene in response to the plant phytohormone auxin by bind-
ing to auxin-responsive cis-acting promoter elements [83,
84]. Cell-specific profiling has revealed that in pericycle cells,
nitrate or glutamine/glutamate downregulates the expres-
sion of miR167, permitting the target ARF8 transcript to
accumulate and trigger lateral root formation in Arabidopsis
[82]. miR167 has also been observed to target IAA-Ala
resistant-3 (IAR-3), whose protein releases bioactive auxin
by hydrolyzing the inactive auxin derivative indole-3-acetic
acid alanine, for the growth and development of lateral roots
under high osmotic stress [85]. Therefore, the downregu-

lated miR167 expression under N-limiting condition might
lift its inhibitory effect on auxin transcription factors which
in turn could induce the development of lateral roots [52].
Collectively, these studies suggest that the availability of N
alters the miRNA expression levels that in turn regulate
the auxin signaling by targeting ARF8 and IAR3 which sub-
sequently regulates the architecture of the root system.

4.4. miR169. miR169 is a large miRNA family and targets
family members of NUCLEAR FACTORY Y, SUBUNIT A
(NFYA), coding for nitrate transporter (NRT1.1 and
NRT2.1.) in Arabidopsis. Under N deficiency, the expression
of miR169 gets downregulated while the transcript levels of
NFYA genes are upregulated [51, 86]. Moreover, transgenic
overexpression of miR169 represses the NFYA expression,
causing Arabidopsis plants to accumulate less N, and was
more sensitive to N deficiency as compared with wild-type
plants showing lower chlorophyll content, higher anthocya-
nin concentration, and early senescence phenotype. This
hypersensitivity in transgenic miR169-overexpressing plants
to N starvation has been attributed to the N-uptake capacity
since NFYA regulates the nitrate transporters NRT1 and
NRT2 [86] suggesting an important role of miR169 in
uptake and remobilization [52].

4.5. miR393. miR393 and one of its targets AFB3 (auxin-sig-
naling F-box protein 3) comprise a unique N-responsive
regulatory module, implicated in controlling the growth
and development of lateral root system in response to the
external and internal N availability [82, 87]. The availability
of nitrate in tips and pericycle regions of roots upregulates
the transcription of AFB3, thereby inhibiting the growth of
primary root and induction of lateral root growth.

However, the N metabolites produced from the reduc-
tion and assimilation of nitrate upregulate miR393 expres-
sion, specifically causing the downregulation of AFB3,
which in turn regulates the growth of primary and lateral
roots [87]. This upregulation of miR393 by N metabolites
and the corresponding rapid downregulation of its target
AFB3 by miR393 constitutes a finely regulated feedback
module that allows the plants to precisely adjust their root
system architecture depending on external and internal
nitrate availability.

4.6. miR397/408. miR397 has been reported to target mem-
bers of the family laccase (LAC2, LAC4, and LAC17), the
copper-containing enzymes regulating the diverse range of
functions related to defense mechanism and lignification of
the cell wall [88, 89]. miR397 and miR398 are involved in
both N and Cu homeostasis; however, under N stress, they

Table 1: Continued.

miRNA Target/function
Mode of
regulation

References

miR9772a-5p-L-2R+2 SCF ubiquitin ligase complex [129]

miR9776-L-1R+1-1ss18AG Cell division; O-methyltransferase [129]

miR9779-p3 Hexose transmembrane transport [129]
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get downregulated, while in response to Cu deficiency, they
get upregulated [19]. Using massive sequencing and compu-
tational analyses, Liang et al. [52] demonstrated that the lac-
case family is also the potential target for miR408 and
miR857 which get downregulated in Arabidopsis under N-
limiting conditions. Abdel-Ghany and Pilon [21] demon-
strated that these miRNAs target the genes of family laccase,
coding for the copper-containing enzymes, and are involved
in a diverse range of functions (miR408: LAC3, LAC12, and
LAC13; miR857: LAC7). As far as the regulation mechanism
is concerned, it has been predicted that miR397, miR408,
and miR857 regulate the activity of the laccase family by
maintaining the C :N homeostasis. Metabolic profiling has
revealed an increase in carbohydrate and starch levels under
N-limiting conditions [90, 91], and the excess fixed C gets
incorporated into lignin through increased laccase activity.

4.7. miR399. miR399 has been described in the literature as
a key regulator in phosphate metabolism, which gets upreg-
ulated in phosphate-limiting conditions, targeting the PHO2
gene encoding for ubiquitin-conjugating E2 enzyme UBC24
[92], a membrane-associated putative Pi transporter, responsi-
ble for the degradation of PHO1 [93]. During phosphate star-
vation, PHO2 transcripts are cleaved by miR399, releasing
the posttranslational repression of PHO1, thus allowing this
protein to accumulate and participate in phosphate uptake.
Conversely, the downregulated expression of miR399 pre-
sumably permits higher-level expression of UBC24, thereby
enhancing proteasome-mediated N remobilization of other
unidentified targets such as Rubisco. Alternatively, the
upregulation of miR399 and the resulting decreased phos-
phate transport could represent an additional mechanism
that conserves plant resources in the form of high-energy
phosphate compounds. The intimate cross-talk between N
response and P pathways at the level of regulated proteolysis
is not well characterized; however, some data indicate that
the N : P link is regulated by PHO2 and miR399 [94].

4.8. miR444. The monocot-specific miR444 is specifically
upregulated by N deficiency in bread wheat [95]. Li et al.
[96] carried out the expression analysis of transgenic plants
of rice and demonstrated an upregulation of four MIKC-
type MADS-box transcriptional factor genes (OsMADS23,
OsMADS27a, OsMADS27b, and OsMADS57). Phylogenetic
analysis grouped these MADS-box transcription factor tar-
gets of miR444 with Arabidopsis ANR1 clade [97], which is
an important regulator in the NO3 signaling pathway and
thus mediating plant tolerance to the N starvation stress
via lateral root growth [98].

4.9. miR528. miR528 is another monocot-specific miRNA
that has the potential to regulate multiple stress responses.
In maize, miR528 is downregulated in response to low N
availability, releasing the posttranslational repression of its
targets, with miR528 transgenic plants exhibiting increased
transcript levels of NiR which might contribute to better
NUE and the increased efficiency for N assimilation [99].
Additionally, in another study, Ascorbic Acid Oxidase
(AAO) and Copper Ion Binding Protein 1 (CBP1) have been

reported to be two putative targets of miR528 and are signif-
icantly repressed in miR528-overexpressing transgenic
plants [99]. Expression and functional studies have revealed
that both the targets mediate oxidation homeostasis and,
thus, prevent damage to cellular components. Transgenic
plants expressing lower levels of AAO under N deprivation
maintain relatively high levels of redox AA, thereby keeping
the balance between reactive oxygen species (ROS) produc-
tion and its scavenging under oxidative stress.

4.10. miR827. miR827 is another miRNA that attracted our
attention. The known target genes of miR827 are members
of SYG1/PHO81/XPR1(SPX) domain-containing proteins.
Under N-limiting conditions, miR827 represses the expres-
sion of the SPX domain-containing N limitation adaptation
(NLA) gene, which is an essential component for developing
the N limitation adaptation responses [100]. Disruption of
NLA in Arabidopsis, under limiting N conditions, has also
been linked to reduced photosynthetic capacity, increased
biosynthesis of anthocyanin, and caused plants to undergo
early senescence. Both anthocyanin biosynthesis and N
remobilization are key features of tolerance to N starvation.

Apart from the above-mentioned miRNAs that are dif-
ferentially expressed under N starvation where nitrate acts
as the source, there is also an effect of the type of N source.
Li et al. [101] worked on the identification of 11 miRNAs in
rice roots that are differentially expressed in response to
ammonium. These included OsmiR6250, OsmiR5082,
OsmiR1846d-5p, OsmiR319a-3p, OsmiR159a.1, OsmiR529a,
OsmiR818b/e, OsmiR394, OsmiR159f, OsmiR167h-3p, and
OsmiR818.

5. Role of MicroRNAs in the Legume-
Rhizobium Symbiosis

Besides their well-studied functions in N sensing and signal-
ing, miRNAs are also being characterized for their role in
plant-microbe symbiosis. To date, large numbers of
symbiosis-responsive miRNA families have been identified
to regulate different stages of nodule development [102],
including several highly upregulated miRNAs in mature
nodules [103, 104]. In this context, an earlier study con-
ducted by Subramanian et al. [105] predicted and identified
several miRNAs as participants in developing this symbiotic
response. The massive sequencing and computational analy-
sis of miRNA library derived from whole soybean roots
inoculated with Bradyrhizobium japonicum revealed that
some miRNAs, like miR168 and miR172, were firstly up-
regulated immediately one hour postinoculation, while a
decreased pattern of expression was observed after this
point. On the other hand, the expression levels of miR160
and miR169 were downregulated in response to the inocula-
tion of rhizobial bacteria, suggesting the dynamic role of
specific miRNAs in modulating signaling and nutrient
homeostasis during inoculation. Previously, Wang et al.
[66] constructed sRNA libraries from soybean root tips
and found that five miRNA families in soybean (miR172,
miR396, miR1508, miR1509, and miR2107) are crucial for
the establishment of legume-rhizobium symbiosis. In situ
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analysis of selected miRNAs by authors demonstrated that
novel miRNAs miR172 and miR2107 accumulated in root
nodules while miR396, miR1508, and miR1509 were down-
regulated in functional nodules during symbiotic N fixation.

Turner et al. [102] reported that the downregulated
expression of miR160 resulted in a significant decrease in
the nodulation process, while the number of mature nodule
formation was significantly increased upon the elevated
expression of miR482, miR1512, and miR1515 compared
with transgenic control vector roots upon B. japonicum
inoculation [106]. Barros-Carvalho et al. [107] demonstrated
the differential expression of miR1530, miR1520, and
miR1522 during the early stages of nodule development,
facilitating nodule organogenesis and symbiotic interactions.
In breakthrough with soybean roots, Wang et al. [108]
proved that the miR172 modulates both Rhizobium infection
and nodule organogenesis. Ectopic expression of miR172
caused a dramatic increase in nodule initiation and mature
nodule numbers. Yan et al. [109] in their experimentation
with soybean roots explored four miRNAs (Gma-miR2606b,
miR1514, TAG2382310, and Gma-miR4416) for their func-
tional relevance with plant-rhizobial symbiosis and demon-
strated that the transcripts of miR1514 and TAG23822310
had no significant effect on nodulation while upon the
upon rhizobial treatment, the expression levels of both
GMa-miR2606b and Gma-miR4416 were downregulated.
However, in transgenic roots, the upregulation of Gma-
miR2606b led to a significant increase in several mature
nodules, while the number of nodule formations was dras-
tically reduced upon constitutive upregulation of Gma-
miR4416 [109].

The potential targets of these symbiosis-responsive miR-
NAs mostly belong to families of various transcription fac-
tors (TFs) and proteins, related to various metabolic
pathways or stress responses including hormone-mediated
signaling, developmental-related proteins, and defense-
associated responses as well as nitrate transporters. De Luis
et al. [110] demonstrated that in L. japonicas, the miR171c
targets the transcription factor GRAS which acts down-
stream of CCaMK and Ca2+ spiking in the Nod factor signal-
ing pathway [111]. In soybean, miR171o and miR171q also
target the GRAS family of transcription factors [112, 113].
Similarly, miR396 shows differential expression patterns in
roots during the nodule formation and growth of lateral
roots [114]. The authors demonstrated that the miR396
limits symbiotic colonization by regulating the growth-
factor-regulating gene (GRF) [114]. In infected root hairs
and during the early stages of nodule primordia formation,
miR172a promoter is induced [115] through miR172 silenc-
ing of the APETALA2 (AP2) transcription factor [115, 116].
The targeted AP2 transcription factor in the case of soybean
has been reported to be Nodule Number Control 1 (NNC1)
which binds directly to the promoter of the early nodulin
gene ENOD40 and thus regulates the nodule primordium
formation [108].

miR166 has been reported to target a conserved class- III
homeodomain-leucine zipper (HD-ZIPIII) transcription
factor family [117], and the ectopic upregulation of
miR166 negatively regulates the density of lateral roots, nod-

ule number, and vascular differentiation in both roots and
nodules in M. truncatula [118]. Similarly, miR169 has been
reported to regulate meristem maintenance and bacterial
release in nodules by controlling the spatial distribution of
the transcription factor HAP2-1 [117]. While both miR166
[118] and miR169 [117] are thus likely to be involved in
nodule organogenesis, no miRNA has so far been linked to
N fixation activity in nodules.

6. Conclusion

miRNAs are currently emerging as the most interesting gene
regulators in plants during mineral nutrient stress. In the
past few years, significant progress has been made to analyze
and characterize different N-responsive miRNAs, with an
increasing number of research reports on the dynamic roles
of miRNAs while maintaining an optimal supply of N under
stress situations. With the advent of new molecular tech-
niques, several key N-responsive miRNAs have been identi-
fied, which has opened a parallel avenue of research in
deciphering their regulatory roles, resulting in the potential
to find target genes that were previously not known for their
involvement in nutrient response. Moreover, while control-
ling the expression of its target genes, miRNAs seem to act
on transcription factors, which is essential for wide-scale
dynamic regulation to efficiently control nutrient homeosta-
sis across different cells/tissues within a plant. Therefore,
microRNA-based manipulation of miRNA expression levels
would represent an effective strategy to overexpression of
mRNAs for engineering NUE in plants, particularly in light
of recent studies on miRNA expression patterns in response
to N starvation.
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